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Abstract: 
A simple method to rate college football teams within a season is proposed and analytically 
discussed. The method uses only one input (final scores of games within a given season) and 
produces a “football truth”, an accurate, unbiased ranking of all 131 FBS (football bowl 
subdivision) teams. Results are then compared to betting markets and human polls as evidence of 
the correctness of the model. 
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1.0 Introduction 
 
 
The goal of this paper is to introduce a computational, bias-free, and open-source method to: 
 
 #1 Accurately Rate and Rank each FBS team, and  
 
 #2 Predict what the playoff committee will list as their top teams each week 
 
Additionally, after ratings and rankings are computed by this method, those results can be used 
to  
 #3 Predict winners in future college football matchups. 
 
 
The largest overall fundamental premise to this method is the mathematical simplicity. If 
successful, I will have persuaded the reader that the method is mathematically elegant1 – 
pleasingly ingenious and simple.  To that end the playoffPredictor.com computer rating method 
uses the single input of final scores in games for the current season to create rankings.  Let’s 
state that again: the premise of this method is the underlying math is so correct and intuitive that 
starting from nothing each season an accurate rating, ranking, and prediction model can be built 
with the simple inputs of final scores in games played during that season.   
 
The method aims to use no inputs that are subjective such as offensive points scored, total yards 
gained, replacement value of a backup quarterback, etc. The reason that these metrics are 
subjective and bad choices for an elegant mathematical method is because the method maker 
must determine what constitutes “good” for those categories.  Of course, a 500-yard offensive 
performance is accepted to be considered good, but how good and how does it compare to a 
turnover margin of -2? Combining many inputs leads to noise, which leads to subjectivity in any 
computer-based formula.  To do a complete mathematical analysis using such inputs there would 
need to be a mechanism to relate categories to each other – for example zero punts in a game is 
worth two touchdowns.  These are valuable efforts and lead to better predictive models, but still 
subjective in how the model maker combines these inputs to arrive at final ratings. In practice 
from other model-makers, weights are assigned by back-testing the full output results to 
historical data. As the SEC often makes its member’s say, “past performance is no guarantee of 
future results” (no, not that SEC, I of course mean the Securities and Exchange Commission). 
 
 
 
 
 

SECTION 1 – COMPUTER MODEL TO RATE AND RANK TEAMS 
 
 

 
1 Elegant, of a scientific theory or solution to a problem, as in  "the grand unified theory is compact and elegant in 
mathematical terms" 
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One input that is not subjective is wins and losses.  Football is a team sport and at the end of the 
day the only thing that should be necessary and sufficient to rank all teams is wins and losses 
against the scheduled played.  A winning outcome is the goal of the team and the only metric 
that need be considered to make a good model on ranking teams. 
 
So how do we map this to college football?  The best model is the one proposed by Pierre-Simon 
Laplace in 1814.  Yes, that Laplace you studied in college math of Laplace transformation fame. 
Of course, Laplace did not apply his method to college football since he preceded it by a hundred 
years2.  Instead, Laplace sought to answer the question “Will the sun rise tomorrow?” Which 
turns out to be a good fit to answer the question “Will my football team win next week?”.   
 
A football team winning or losing a single game is a binomial probability. In each trial (football 
game) there is only success (W) or failure (L). Will the sun rise tomorrow can also be modeled 
as a binomial – success (it will rise), or failure (it will not rise). Now, having no further insight 
except that the trial must end in success or failure you can model this probability by  
 

𝑃(𝑠𝑢𝑛	𝑤𝑖𝑙𝑙	𝑟𝑖𝑠𝑒	𝑡𝑜𝑚𝑜𝑟𝑟𝑜𝑤) = 	
𝑑 + 1

𝑑 + 𝑓 + 2 (1) 

 
where 𝑑 represents the number of times the sun has risen in the past, and 𝑓 represents the 
mornings where the sun did not rise. Clearly the sun has never (yet) failed to rise, so equation 1 
simplifies to  

𝑃(𝑠𝑢𝑛	𝑤𝑖𝑙𝑙	𝑟𝑖𝑠𝑒	𝑡𝑜𝑚𝑜𝑟𝑟𝑜𝑤) = 	
𝑑 + 1
𝑑 + 2 

 
So, on day 1 when God created Adam, and subsequently Adam wondered if the sun would rise 
tomorrow, he would have computed the probability as ½ - having no prior data and no 
knowledge of the workings of gravity, etc. – it’s a 50/50 shot. On day 2 after a successful first 
sunrise the odds for day #3 improve to 2/3, and by now with 3,000,000 days where humans have 
documented the sun did indeed rise yesterday, the odds for tomorrow improve substantially to  
 

!,###,###
!,###,##$

= 0.999999667	≈	1	
 
Now of course Laplace had insight to say that if you understand the mechanics of gravity and 
planetary motion you can make a much better guess as to the true probability. We will leave the 
detailed models to the other model-makers.  Our goal is can we be simple in our inputs and 
arrive at some type of “football truth”? 

 
2 And he was French, and the French have no love for American college football 
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Of special note, the reader should recognize the formula for the sun rising 
is not %

%
 ,  it is %&$

%&'
 . This is a critical detail. Without that 1 in the numerator 

and 2 in the denominator what you will find out is that probability models 
do not converge. Laplace treated the “why” mathematically, and Wes 
Colley in his seminal paper also explains in good detail why the ½ is 
necessary for a start. It is not in the scope of this paper to prove the 
necessity of the ½, please see Wes Colley’s 2002 paper if the reader needs 
proof of that fact.  
 

 
At this point we switch from probability notation [P(X)] to rating notation [𝑟(].  We are 
transforming the probability into a rating, and the rating is only valid in pairwise operations. 
That is, unlike probabilities which stand on their own [P(heads)=0.5], a rating for a team is only 
valid when comparing against the rating of another team [for instance, 𝑟)*+*,- =
0.7		&			𝑟./012341 = 0.6]. On its own 𝑟)*+*,- = 0.7		means nothing, it must be compared to the 
other ratings in the system.   Indeed, when we make our corrections for ratings for strength-of-
schedule and margin-of-victory our ratings can take a value greater than 1 or less than 0. 
Probability notation will not suffice.   
 
 
 

2.0 - Basic 2 team analysis and strength of schedule 
 
 
To map to football, simply use the idea of the sun successfully rising as a win (football number 
of wins is analogue to sun successfully rising) and sun not rising as a loss (football number of 
losses is analogue to sun not rising for one given morning).  In our notation 𝑑 becomes 𝑛5 and 𝑓 
becomes 𝑛0 . The ratings for team A become 
 

𝑟) =	
𝑛5,) + 1

𝑛5,) +	𝑛0,) + 2
 (2) 

 
The sum of wins and losses equals the total games played, 𝑛636 = 𝑛5 +	𝑛0 

 

 

𝑟) =	
𝑛5,) + 1
𝑛636,) 	+ 2

 

 
So, we start with simple wins and losses. That gives us a winning percentage and a way to rank 
teams.  The first obvious limitation is simple winning percentage does not consider strength of 
schedule.  If we consider 12-0 Alabama and trying to rank that against 12-0 Cincinnati, for both 
teams we will compute their rating as $'&$

$'&'
=	 $!

$7
	≈ 		0.929 

We need a way to understand that Alabama’s 12 wins are superior to Cincinnati’s 12 wins. 
Strength of schedule is the first step to get there.    
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2.1 Adding in Strength of Schedule (the Colley method) 

Note that number of wins can be rearranged: 
 

𝑛5 =
(𝑛5 − 𝑛0)

2 		+ 	
𝑛636
2 							 

 
(Which the reader can check). Recognize the second term may be written as  
 

>		
1
2

-!"!

 

 
allows one to identify the sum as that of the ratings of a team’s opponents if those opponents are 
all random (r = 1/2) teams. Instead, then, of using r = 1/2 for all opponents, we now use their 
actual ratings, which gives an obvious correction to 𝑛5.  (now using the term 𝑛5,8 to mean team 
“𝑖” is under consideration) 
 

𝑛5,8
9:: =

?𝑛5,8 	− 	𝑛0,8@
2 +	 > 𝑟;8

-!"!,$

;<$

 
 

(3) 

 
where 𝑟;8 is the rating of the 𝑗62 opponent of team 𝑖. The second term (the summation) in 
equation (3) is the adjustment for strength of schedule3.   
 

Axiom #1: The sum of rating of random teams can be replaced with the sum of the rating of 
teams played since  𝑟̅ = 0.5 

 
The resulting rating formula with SoS becomes 

𝑟8 =	
1	 +	𝑛5,8

9::

2	 + 𝑛636,8 	
 (4) 

 
The goal is to simultaneously solve all the 𝑟;8’s which are inputs to the 𝑟8’s.  What we end up with 
is a system of 131 equations and 131 unknowns (131 being the number of football teams in a 
given FBS season). That becomes an algebraically solvable system.  Thanks to modern 
computing power, solving a system of equations (that has a bound solution) is a simple task. 
 
Notice the denominator in equation 4 is simply the number of games A plays plus 2. Unlike the 
numerator there is no concept of effective wins (SoS). That allows a straightforward, 
uncomplicated matrix solution to the equations. 
 

 
3 This equation and the surrounding paragraphs are copied directly from Wes Colley’s 2002 paper.  The credit for 
understanding ½ random should be replaced with actual ratings is the first and most important mathematical 
elegance of this method.  In my opinion, that insight is like an 𝐸 = 𝑚𝑐% type of insight. Simple, mathematically 
correct, elegant.  
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Let’s apply this math to a simple two-team league. In our simple world, team A plays and beats 
team B.  The system of equations describing this league would simplify to: 
 

𝑟) =	
$&-&,'

())

'&	-!"!,'
                   𝑟> =	

$&-&,*
())

'&	-!"!,*
 

where  
 

𝑛5,)
9:: = ?-&,'	–	-+,'A

'
+	𝑟>                 𝑛5,>

9:: = ?-&,*	–	-+,*A
'

+	𝑟)        
 
Substituting in the equality for 𝑛5

9::, 
 

𝑟) =	
$&

,-&,'	–	-+,'0
1 &	,*

'	&	-!"!,'
   𝑟> =	

$&
,-&,*	–	-+,*0

1 &	,'
'	&	-!"!,*

 

 

𝑟) =	
$&(3	–	4)1 &	,*

'	&	$
   𝑟> =	

$&(4	–	3)1 &	,'
'	&	$

 
 

𝑟) =	
$.C	&	,*

!
    𝑟> =	

#.C&	,'
!

                 (5) 
 

Two equations and two unknowns.  The reader can check that 𝑟) = 0.625 and 𝑟> = 0.375 satisfy 
these equations exactly.  
 
Arranging the first writing of equation (5) for team A differently,  
 

(2	 +	𝑛636,))	𝑟) 	− 	𝑟> = 	1 + ?-&,'	–	-+,'A
'

    (6) 
 
Extending to 131 FBS teams playing 800-900 games on average it is convenient arrange 
equation (6) in summation form:  
 

?2 + 𝑛636,8@	𝑟8 −	 > 𝑟;8
-!"!,$

;<$

	= 		1 +	
?𝑛5,8 − 𝑛0,8@

2  

 
If desired, isolate the rating: 
 

	𝑟8 	=
		1 +	

?𝑛5,8 − 𝑛0,8@
2 +	∑ 𝑟;8

-!"!,$
;<$

?2 + 𝑛636,8@
 

 
 
Switch to matrix form by rewriting equation (5) as follows, 
 

𝐶𝑟 = 	𝑏I⃗ , (7) 
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where 𝑟 is a column-vector of all the ratings	𝑟8, and 𝑏I⃗ , is a column-vector of the right-hand-side of 
equation (6): 

𝑏8 = 1 +
?𝑛5,8 − 𝑛0,8@

2  
 
The ith row of matrix C has as its ith entry 2 + 𝑛636,8, and a negative entry of the number of games 
played against each opponent j. In other words,  
 

𝑐88 	= 	2	 +	𝑛636,8 	
𝑐8; 	= 	−	𝑛;,8											

 
Solving the preceding equations is the method for the Colley Matrix rating of the teams. 
 
 

2.2 Adding in Margin of Victory (the playoffPredictor.com method) 
 
The next logical question is if the Colley Matrix method is sufficient. Ideally it would be, but in 
practice it is not quite, in my estimation. Or at least I feel we can and need to do better.  The 
method starts with all teams at 𝑟 = 0.500 and only converges at very good ratings by the end of 
the season.  If we want to predict future games midseason it does us no good to know that the 
ratings will be right at the end of the season!  Furthermore, Colley defined an error statistic η, 
that by the end of the season with his method got to an error of about ~1.25 by the end of the 
season, and is about ~1.6 midseason. However, we need a way to make these ratings converge 
with press ratings by early or midseason to test the predictive powers of the model.  Enter margin 
of victory.  
 
Our next task is to introduce a set of coupled variables; one that extends the definition of an 
effective win (𝑛5,)

9::) using margin-of-victory, and another variable that relates this margin-of-
victory to the already defined win/loss matrix.  
 

 
 

2.2.1 Margin of Victory method – win margin perspective 
 

 
At this point we introduce a new variable 𝑚	and an associated weighting 𝛼. We extend the 
equations by adding an extra term to the rating: 
 

𝑟8 =	
1 + 𝑛5,8

9:: + 𝛼	𝑚636,8
9::

2 +	𝑛8 − 𝛼	𝑚636,8
	 (8) 

 
𝑛5,8
9::is defined as it was in eq .  We define 𝑚636,8

9::  as: 
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𝑚636,8
9:: =	> 𝑟𝑗𝑖

𝑛𝑡𝑜𝑡,𝑖

𝑗=1

∙ 𝑚𝑖𝑗 

 
𝑛8 is the total number of games team 𝑖 has played (can also be written as 𝑛8636 or 𝑛636,8).  
 
𝑚636,8 is the total number of margin team 𝑖 has accumulated in all games played (can also be 
written as 𝑚8

636).  Margin for each game is a number between [−1,1] so the sum of all margins 
for a team 𝑖 will be between [−𝑛8 , +𝑛8].      
 

𝑚636,8 =	>𝑚𝑖𝑗

𝑛𝑡𝑜𝑡,𝑖

𝑗=1

 

 
 
The new term 𝑚&' is defined as the margin of victory in the game played between teams 𝑖 and 𝑗: 
 
   𝑚&' is a positive number for a win by greater than average point differential by team 𝑖	.  
   𝑚&' is defined to be zero for a win by team 𝑖	with an average scoring differential. 
   𝑚&' is a negative number for a win by less than average point differential by team 𝑖	. 

And by necessity 𝑚&' =	−	𝑚'&
4. 

 
In a win by team 𝑖, 𝑚8; as a number close to +1 means that team	𝑖 blew out team 𝑗, a number 
close to 0 means team 𝑖 and team 𝑗 played a standard game (that 𝑖 won), and a number close to -1 
means team 𝑖 barely squeaked by team 𝑗.     
If team 𝑖 lost the game, then 𝑚8; as a number close to -1 means that team	𝑖 got blown out by 
team 𝑗, a number close to 0 means team 𝑖 and team 𝑗 played a standard game (that 𝑗 won), and a 
number close to +1 means team 𝑖 barely lost to team 𝑗. 
 
𝛼 is a scaling factor that relates margin-of-victory to wins and losses (which we will solve for 
later). 
 
What we are doing is modifying the number of effective wins and number of total wins by some 
𝑚 margin. Since the 𝑚 margin is related to the 𝑛 games, we do not need to add an entire 
(1 +𝑊) (2 + 𝑇)⁄  form again, we can add simply extend the 𝑛5,)

9:: 𝑛636,)S  form into a 
?𝑛5,)

9:: +𝑚5,)
9::@ ?𝑛636,) −𝑚636,)@S .  Notice the extension is additive in the numerator while 

negative in the denominator. 
 
When thinking about it from the point of view of a “hidden” maker on a unit width craps table, 
we are now being told not only if our cast die landed to the left of the marker, but we are also 
told how far left it was cast. We still our not told where our hidden marker (true team rating) is, 
but we are told “you landed left (won the game), but very close to the marker (𝑚&' is very close 

 
4 The resulting matrix is not symmetrical anymore since 𝑚'& ≠ 𝑚'&, but it is still of full rank and solvable 
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to -1)”, or “you landed left(won the game) by an average distance from that marker  (𝑚&' is about 
zero)”, or “you landed left (still won the game), far away from the marker (𝑚&' is very close to 
+1)”.  This is the conceptual value of 𝑚, our margin of victory.    
 
Note inside 𝑚8

9:: that absolute score values are not considered – that is there is no 𝑚636,8 for the 
team independent from being multiplied by a team rating5. The only margins are multiplied by 
the team played or by the team itself (for the 𝑚636,8 in the denominator of equation 8). Indeed, 
blowing out Duke by 23 points is very different from blowing out Ohio State by 23 points.  
 
The ∑ 𝑟'&

(%&%,'
')* ∙ 𝑚&' component is defined from the perspective of scoring margins that deviate from 

median scoring margins, so if a team wins all their games by blowouts this will be a large 
positive number.   Interestingly, if a team loses all their games (0-12) by squeakers ∑ 𝑟'&

(%&%,'
')* ∙ 𝑚&' 

will also be a large positive number.   If they win half and lost half all by average margins, this 
will be about 0, and if they lose all their games by blowouts this will be a large negative number.  
Drilling down further, note that if a team A beats a top team by the same margin they lose to a 
bottom team that the net result will be positive for team A6. That is why we define margin-of-
victory this way as a win-margin perspective.   
 
 

Recalling eq 3 for 𝑛5,8
9:: and expanding out the full form of eq 8 we get: 

 
 

+2 + 𝑛+,+,& − 𝛼	𝑚+,+,&0	𝑟& = 1 + 2
3𝑛.,& − 𝑛/,&4

2 5 +	67 𝑟'&
(%&%,'

')*

8 + 𝛼 6	7 𝑟'&
(%&%,'

')*

∙ 𝑚&'8	 

 
Collecting our 𝑟 terms: 
 

+2 + 𝑛+,+,& − 𝛼	𝑚+,+,&0	𝑟& 	− 7 +1 + 𝛼	𝑚&'0	𝑟'&
(%&%,'

')*

	= 1 + 2
3𝑛.,& − 𝑛/,&4

2 5	 

 
Meaning that the full final rating for team 𝐴 is given as: 
 

	𝑟) 	=
		1 +	

?𝑛5,) − 𝑛0,)@
2 +	∑ 	U1 + 𝛼	𝑚𝐴𝑗V	𝑟𝑗𝐴					

-!"!,'
;<$

?2 + 𝑛636,) − 𝛼	𝑚𝑡𝑜𝑡,𝐴@
 

 
Solving that set of equations for all 132 teams A-Z is the playoffPredictor.com win-perspective 
computer method for rating the teams.  

 
5 Stated another way, the column vector b remains unchanged from the Colley definition. 
 
6 Imagine a 6-6 Mississippi State team. They count among their wins a 35-point victory against Alabama 
(𝑟67898:8 = 0.9). They also count among their losses a 35-point loss to Vanderbilt (𝑟;8<=>?9@7A = 0.3). The net 
margin for these 2 games will be +(0.9)(0.25)+(0.3)(-0.25) = +0.15, which is a net positive to Mississippi State. 
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A value of  𝑚)> = 0 means that team A and B finished with no margin of victory (the median 
score differential in college football is 15 points) which effectively makes the 
playoffPredictor.com computer method simplify into the Colley method. A value of +1 for 𝑚)> 
means that team A beat team B with full margin-of-victory achieved. Think team A beating team 
B in a 100-point blowout.  A value of -1 for 𝑚)> means that team A beat team B by the tiniest of 
margins, like a 1-point victory7.   We will quantify this thinking now: 
 
Let’s say team A beats team B by the final score of 101-0. We want to give them more credit for 
this win than just a single standard win. In our model 101 points will equate to a full margin-of-
victory credit (𝑚 = 1), which will make the math simpler. We do not know the correct value of  
𝛼 yet, but we will use 0.5.  The rating of team A becomes: 
 

[2 + 1 − 	𝛼	(1)]	𝑟) 			− 		 [1 + 𝛼	(1)]	𝑟> 	= 		1 +	
(1)
2  

 
[3 − 	𝛼	]	𝑟) 		− 		 [1 + 𝛼	]	𝑟> 	= 		1.5	 

 

	𝑟) 	= 		
W1.5 + 𝛼2X 		+ 		 [1 − 𝛼	]		𝑟>

[3 − 	𝛼	]  

 
 
The solution for these pair of equations for 𝛼 = 0.5 is  
 

	𝑟) 	= 		0.75;			 	𝑟> 	= 		0.25	          (9) 
 

𝑟) has changed from 0.625 in a non MoV context to 0.75 in a MoV context. 
 
 

 
In matrix form, the equations become: 
 

𝑟 = 	𝐴D$𝑏I⃗ , (10) 
 
Note the difference to equation (7). We are trying to solve for ratings, so the ratings variable 
is isolated on the left-hand side. We use the notation 𝐴D$ to denote the inverse of the 𝐴 matrix, 
which is the 𝐶 matrix extended for margin-of-victory.  𝑟 is still the column-vector of all the 
team’s ratings	𝑟8, and 𝑏I⃗ , is the same column-vector as defined before. 
 
The 𝑖th row of matrix 𝐴 has as its 𝑖th entry 2 + 𝑛636,8 − 	𝛼	(𝑚636,8), and an entry of [ -1 + the 
MoV scaling factor (𝛼) * the MoV value 𝑚 ] for each game played against each opponent j. In 
other words,  

 
7 Or better yet, like a victory by default, if such a thing were to ever happen. 
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𝑎88 	= 	2	 +	𝑛636,8 − 	𝛼	(𝑚636,8)	
𝑎8; 	= 	−	𝑛8,;		 + 		𝛼	(𝑚8;)								

(11) 

 
The matrix A is the playoffPredictor.com Matrix. It extends the Colley Matrix with 
information on margin of victory. Solving equations (10)–(11) is the playoffPredictor.com 
win-perspective computer method for the rating of the teams in the matrix domain. 

 
In our 2-team scenario the non-MoV matrix is  
 

	"
𝑟-
𝑟.$ = 	 "

3 −1
−1 3 $

/0
"1.5
0.5

$ = ". 625
. 325

$ 
 

Adding in 𝛼	and 𝑚	as described results in:  
 

"
𝑟-
𝑟.$ = 	 .

3 − 𝛼 ∙ 𝑚𝐴𝐵 −1 + 𝛼 ∙ 𝑚𝐵𝐴
−1 + 𝛼 ∙ 𝑚𝐴𝐵 3 + 𝛼 ∙ 𝑚𝐵𝐴

2
/0
"1.5
0.5
$ = 	 . . 625 + 𝛼 ∙ 𝑚𝐴𝐵 3⁄

. 375 + 𝛼 ∙ 𝑚𝐵𝐴 3⁄ 	2 
 
For 𝛼 = 0.5 and 𝑚)> = 1 / 𝑚>) = −1  (full MoV victory) the matrix becomes: 
 

"
𝑟-
𝑟.$ = 	 "

3 − 0.5 −1 − 0.5
−1 + 0.5 3 + 0.5 $

/0
"1.5
0.5

$ 
 

"
𝑟-
𝑟.$ = 	 "

2.5 −1.5
−0.5 3.5

$
/0
"1.5
0.5

$ = 	 ". 75. 25
$ 

 
 
Which recovers our 	𝑟) 	= 		0.75	 and 	𝑟> 	= 		0.25 that we obtained in equation (9) 
 
 
 
 
 
Notice when 𝛼 and 𝑚 added in this way we preserve the nature of the matrix, namely 
 

𝑟̅ = 0.5,      (the average rating of all teams is 0.5) 
∑𝑏 = 	 𝑐𝑜𝑢𝑛𝑡6914G,     
∑𝐴D$ = 	0.5 ∗ 	𝑐𝑜𝑢𝑛𝑡6914G,   and 
∑𝐴 = 	2 ∗ 𝑐𝑜𝑢𝑛𝑡6914G  

 
If those criteria are met the matrix remains stable and solvable. 
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2.3 Theoretical value of 𝛼 
 

Is there a way to deduce the correct value of 𝛼 theoretically? Remember 𝛼 relates MoV to 
winning a game.  Stated another way, there is proportionality between a game win and a high 
MoV   [  𝑝(𝑤𝑖𝑛) ∝ 	+𝑀𝑜𝑉 ]. Alpha is a constant that makes this proportion into an equation              
[  𝑝(𝑤𝑖𝑛) = 	𝑓(𝛼, (+𝑀𝑜𝑉))  ].  How is it possible to theoretically predict the margin of victory 
for a winner?  There is a linkage through rematches. Note what happens in our 2-team league 
with rematches.  If A plays B two times and wins both times we get 
 
 

"
𝑟-
𝑟.$ = 	 "

4 −2
−2 4 $

/0
"20$ = ". 667. 333$ 

 
 
That is 𝑟) has increased from 0.625 to 0.667. In general, for R successive rematches, all won 
by A, the rating column-vector without MoV goes to: 
 

"
𝑟-
𝑟.$ = 	 "

3 + 𝑅 −1 − 𝑅
−1 − 𝑅 3 + 𝑅 $

/0
"1.5 + 0.5𝑅
0.5 − 0.5𝑅

$ 
 

 
For many repeated rematches and wins by A we approach  
 

"
𝑟-
𝑟.$ = 	 "

∞ −∞
−∞ ∞ $

/0
8
1
29 	∞

−1 29 ∞
: = 	 "0.750.25

$	 

 
 
 

 

 
Figure 1: Progression of team ratings of A&B with repeated A vs B rematches with A winning every time 

  
 
 
Returning to our formula with MoV, let’s see how different values of 𝛼 (holding 𝑚 steady at 
+1) affect 𝑟⃗:  
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Note that for an 𝛼 = 0.5 we get the ratings with our full MoV after 1 game equal to the ratings 
in a non-MoV environment after infinite rematches.  A full margin-of-victory win is equal to 
saying that team A would beat team B 100% of the time.  Is this reasonable? From a theoretical 
standpoint, yes! We can set MoV however we want to, but if team A can beat team B by 100 
points or something absurd like that, we can say that’s equivalent to team B never beating team 
A, even if you gave them a thousand tries. Their probability spaces do not overlap anymore.    
 

Axiom #2: The MoV to win scaling constant, alpha, is defined as α = 0.5 
 
It is critical to appreciate that we have arrived at 𝛼 without any historical back testing 
whatsoever. To this point we are all in the realm of theory.   
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2.3 Practical value of 𝑚 

 
The correct way to choose 𝑚 for any given gave is to scale margin-of-victory from the point 
domain into the time domain. Since our equations will effectively give a winning team A credit 
for a little extra victory over team B, we want to match the extra quantity to the quantity of the 
win. That sounds odd because winning is a binary even (happens or does not), but we strive to 
stretch that definition here.  If the game is effectively over at the first minute after halftime then 
m should be about +0.5, since that is the amount of game left. If we simply choose the range for 
a close game to match, then m=-0.5 will indicate a game that came down to the final play. This 
gives us a working range well within the +1 (infinitely better) and -1 (same) theoretical m range. 
 
Using inputs as a final score though, there is no elegant truth to the correct value of m for any 
given single game. A game that ends with a 1 point win can be decided much earlier than a game 
that ends with a 5 point victory, there simply is no way to infer that without more information 
than the final score. Nevertheless, since at this time the only input we have is the final score we 
can propose some common-sense mappings.  The model-maker can choose to scale it piecewise 
linearly such that a 1-point victory is worth 𝑚 = −0.5, a 15-point victory8 (15 being the median 
margin of victory in college football) is worth 𝑚 = 0, and an 80-point victory is worth 𝑚 = 0.5, 
or the model-maker can use arctan functions to defeat runaway scores, logistic functions, or a 
discrete mapping. There is solid logic behind a stepwise (nonlinear) increase between a margin 
of victory of 7 points and 8 points – the former can be tied on one score at the end of the game, 
where the later needs a score and a 2-point conversion to tie.  
 
The simplest option for the model maker is tiered Margin of Victory: 
 

𝑚 =	a			
			−0.25, 𝑓𝑜𝑟	𝑀𝑜𝑉	𝑜𝑓	1 − 7	𝑝𝑜𝑖𝑛𝑡𝑠
														0, 𝑓𝑜𝑟	𝑀𝑜𝑉	𝑜𝑓	8 − 24	𝑝𝑜𝑖𝑛𝑡𝑠
						0.25, 𝑓𝑜𝑟	𝑀𝑜𝑉	𝑜𝑓	25 + 	𝑝𝑜𝑖𝑛𝑡𝑠

 

 
This corresponds to thinking about wins as close wins, solid wins, and blowouts.   This is closer 
to how humans view results – pollsters tend not to differentiate much between a 10-point win 
and a 20-point win. They are both solid wins.   The advantage here is that this keeps the method 
simple, and our goal is simplicity for a “football truth”.  Wins are tiered into sub 1 score, 2-3 
score wins, and 4+ score wins.  Why this breakdown? Because in a given season roughly 1/3 of 
all games fall into each tier. In the 2021 season the specific breakdown was:  
 

tier Margin of 
Victory 

Number of 
games 

close wins 1-7 281 
solid wins 8-24 332 
blowouts 25+ 267 

         (n=880 total games). 
 

8 A 15-point victory is expressly defined as 𝑚 = 0, so the equation 𝑟 = 	𝐴BC𝑏5⃗ , expressly simplifies to 𝒓5⃗ = 	𝑪B𝟏𝒃55⃗  
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Can this tiering be improved upon? Probably. You could have more tiers as on the surface a 24-
point victory seems a lot more solid than an 8-point victory.  However, the value of these tiers is 
simplicity.  It is easy to understand the idea of solid wins and blowouts, and simple to go in one-
quarter increments.  
 
Because the number of games in these 3 categories is all similar and we use a negative value for 
𝑚 in the close wins that is of equal magnitude to the positive value for 𝑚 in the blowouts we arrive 
at an important result, namely $

!
	(−.25) + $

!
(0) + $

!
(+.25) = 0.  That means that we will not have 

inflation of rating when we add in margin-of-victory.  If instead we choose  
 

𝑚 =	a			
												0, 𝑓𝑜𝑟	𝑀𝑜𝑉	𝑜𝑓	1 − 7	𝑝𝑜𝑖𝑛𝑡𝑠

											0.25, 𝑓𝑜𝑟	𝑀𝑜𝑉	𝑜𝑓	8 − 24	𝑝𝑜𝑖𝑛𝑡𝑠
									0.50, 𝑓𝑜𝑟	𝑀𝑜𝑉	𝑜𝑓	25 + 	𝑝𝑜𝑖𝑛𝑡𝑠

 

 
we would get similar rankings to our 𝑚 ∈ (−0.25	, 0	, +.25) model but very different ratings. That 
is because we will have rating inflation for the best teams and rating deflation for the worst – at 
the end of a season the ratings would be in the range of −0.5	 < 	𝑟	 < 	+1.5, instead of 0 < 𝑟 <
+1.  Keeping the ratings roughly between 0 and 1 allows for direct comparison to the Colley 
Matrix and easy comparisons over time to different teams from different seasons. 
 
For our model we will use the following tiered margin-of-victory weights: 
 
 

𝑚 =	f			

−0.2,														𝑓𝑜𝑟	𝑀𝑜𝑉	𝑜𝑓	1 − 2	𝑝𝑜𝑖𝑛𝑡𝑠
										0,															𝑓𝑜𝑟	𝑀𝑜𝑉	𝑜𝑓	3 − 24	𝑝𝑜𝑖𝑛𝑡𝑠

											0.2,															𝑓𝑜𝑟	𝑀𝑜𝑉	𝑜𝑓	25 − 34		𝑝𝑜𝑖𝑛𝑡𝑠
				0.3,															𝑓𝑜𝑟	𝑀𝑜𝑉	𝑜𝑓	35 + 𝑝𝑜𝑖𝑛𝑡𝑠

 

 
 
 

The playoffPredictor.com computer model uses the option for tiered margin-of-victory with 
weights of 𝒎 ∈ (−𝟎. 𝟐	, 𝟎	, +𝟎. 𝟐	, +𝟎. 𝟑)  for 𝑴𝒐𝑽	 ∈ (	𝟏 − 𝟐, 𝟑 − 𝟐𝟒	, 𝟐𝟓 − 𝟑𝟒, 𝟑𝟓+) 
margin. 

 
 
 
 
 

2.4  Margin-of-Victory range 
We have already seen how an 𝑚 = +1 impacts a 2-team league. How does an 𝑚 = −1 impact 
the same league? Recall that as 𝛼 was increased from 0 to 0.5 the ratings increased from  
 	𝑟) 	= 		0.625;			 	𝑟> 	= 		0.375	   to      	𝑟) 	= 		0.75;			 	𝑟> 	= 		0.25	, now as the product of 
𝑚𝛼 goes from 0 to -0.5 we find that 	𝑟) 	= 		0.5;			 	𝑟> 	= 		0.5  
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We come to a conclusion that is the anthesis of the 𝑚 = +1 scenario – namely a victory where 
𝑚 = −1 does not help the rating of A over B at all.  It is like a 𝑚 = −1 victory is a victory by 
default, the other team missed the bus. Note that this is not the same as the 2 teams never having 
played. Examine the matrix before any games are played: 
 

𝑟)
𝑟>
=	 W2 0

0 2X
D$
	q
1
1r = 	

0.5
0.5 

 
And examine the matrix after A defeats B with 𝑚)> = −1  
 

𝑟)
𝑟>
=	 W 3.5 −0.5

−1.5 2.5 X
D$
	q
1.5
0.5r = 	

0.5
0.5 

 
The final results may be all the same 0.5 rating, but the matrix in the middle is vastly different.  
This will have the effect of drawing the 2 teams closer to each other, a very different result when 
combined with all the other games in the season.  
 
 
 
 
 

3.0 moving the model to 3 teams 
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Consider a 3-team league, teams A-C. Three games are played, A beats both B and C by 15 
points and B beats C, also by 15 points.  Our equations become: 
 
 
 	

+2 + 𝑛+,+,3 − 𝛼3𝑚+,+,340	𝑟3 = 1 + 2
3𝑛.,3 − 𝑛/,34

2 + 𝑟4 + 𝑟55 + 𝛼[𝑟4𝑚34 + 𝑟5𝑚35]	 

 

+2 + 𝑛+,+,4 − 𝛼3𝑚+,+,440	𝑟4 = 1 + 2
3𝑛.,4 − 𝑛/,44

2 + 𝑟3 + 𝑟55 + 𝛼[	𝑟3𝑚43 + 𝑟5𝑚45]	 

 

+2 + 𝑛+,+,5 − 𝛼3𝑚+,+,540	𝑟5 = 1 + 2
3𝑛.,5 − 𝑛/,34

2 + 𝑟3 + 𝑟45 + 𝛼[	𝑟3𝑚53 + 𝑟4𝑚53]	 

 
 
 

[2 + 2 − 0.5(0)]	𝑟3 = 1 + 2
(2 − 0)
2 + 𝑟4 + 𝑟55 + 0.5[	𝑟4 ∙ 0 + 𝑟5 ∙ 0]	 

 

[2 + 2 − 0.5(0)]	𝑟4 = 1 + 2
(1 − 1)
2 + 𝑟3 + 𝑟55 + 0.5[	𝑟3 ∙ 0 + 𝑟5 ∙ 0]	 

 

[2 + 2 − 0.5(0)]	𝑟5 = 1 + 2
(0 − 2)
2 + 𝑟3 + 𝑟45 + 0.5[𝑟3 ∙ 0 + 𝑟4 ∙ 0]	 

 
 
 

[4]	𝑟3 = [2 + 𝑟4 + 𝑟5] + [0]	 
[4]	𝑟4 = [1 + 𝑟3 + 𝑟5] + [0]	 
[4]	𝑟5 = [0 + 𝑟3 + 𝑟4] + [0]	 

 
 
The values 𝑟3 = 0.7, 𝑟4 = 0.5, 𝑟5 = 0.3 solve these equations.  This is intuitive. A is separated from B by 
the same distance as B is separated from C.  
 
 

 
Now, consider what happens if A beats B by 21, A beats C by 41, and B beats C by 21.  Using tiered 𝑚 our 
model gives a 21-point victory of 𝑚34 =	𝑚45 	= 0 and a 41-point victory gives 𝑚35 = 0.25	 :9 
 
	

+2 + 𝑛+,+,3 − 𝛼3𝑚+,+,340	𝑟3 = 1 + 2
3𝑛.,3 − 𝑛/,34

2 + 𝑟4 + 𝑟55 + 𝛼[	𝑟4𝑚34 + 𝑟5𝑚35]	 

 

+2 + 𝑛+,+,4 − 𝛼3𝑚+,+,440	𝑟4 = 1 + 2
3𝑛.,4 − 𝑛/,44

2 + 𝑟3 + 𝑟55 + 𝛼[	𝑟3𝑚43 + 𝑟5𝑚45]	 

 
9 And of course, 𝑚53 = −0.25 
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+2 + 𝑛+,+,5 − 𝛼3𝑚+,+,540	𝑟5 = 1 + 2
3𝑛.,5 − 𝑛/,34

2 + 𝑟3 + 𝑟45 + 𝛼[	𝑟3𝑚53 + 𝑟4𝑚53]	 

 
 
 

[2 + 2 − 0.5(. 25 − 0)]	𝑟3 = 1 + 2
(2 − 0)
2 + 𝑟4 + 𝑟55 + 0.5[	𝑟4 ∙ (0) + 𝑟5 ∙ (0.25)]	 

 

[2 + 2 − 0.5(0 − 0)]	𝑟4 = 1 + 2
(1 − 1)
2 + 𝑟3 + 𝑟55 + 0.5[	𝑟3 ∙ (0) + 𝑟5 ∙ (0)]	 

 

[2 + 2 − 0.5(0 − .25)]	𝑟5 = 1 + 2
(0 − 2)
2 + 𝑟3 + 𝑟45 + 0.5[	𝑟3 ∙ (−0.25) + 𝑟4 ∙ (0)]	 

 
 
 

[3.875]	𝑟3 = [2 + 𝑟4 + 𝑟5] + [+0.125𝑟5]	 
[4]	𝑟4 = [1 + 𝑟3 + 𝑟5] + [0]	 

[4.125]	𝑟5 = [0 + 𝑟3 + 𝑟4] + [−0.125𝑟3]	 
 
 
 
 
 

3.875	𝑟3 − 𝑟4 − 1.125𝑟5 	= 2	 
−𝑟3 				+ 4	𝑟4 − 𝑟5 = 1	 

−0.875𝑟3 		− 𝑟4 	+ 	4.125	𝑟5 	= 0 
 
 

	𝑟3 =			
𝑟4 + 1.125𝑟5 + 2

3.875 	 

				𝑟4	 =									
𝑟3 + 𝑟5 	+ 1

4 									 

		𝑟5 	= 	
0.875𝑟3 	+ 𝑟4 		+ 0

4.125  

 
 
 
 
 
The values 𝑟3 = 0.725, 𝑟4 = 0.5, 𝑟5 = 0.275 solve these equations.   This is an intuitive result. A is better 
and C is worse as a reward (punishment) for the blowout win as compared to when they were all standard 
wins.  
 
 
Standard deviations 
Consider the 3-team league where A beats both B&C and B beats C. Clearly A will be on top every time, 
but by what margin?  In the case of all 15-point victories we saw 𝑟3 = 0.7, 𝑟4 = 0.5, 𝑟5 = 0.3.  In the case 
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of the 41-point victory for A over C and 21-point victories A-B & B-C, we see 𝑟3 = 0.725, 𝑟4 = 0.5, 𝑟5 =
0.275.   (note that both 15 points and 21 points map to an 𝑚 = 0) 
 
If we look at these two scenarios from the view of standard deviations, we see they are both the same 
result: A is +1.22 standard deviations over B, and C is -1.22 standard deviations under B. Mathematically 
there is no difference in relative goodness between these teams if the only information we have is a 
21/21/41-point victories or 15/15/15-point victories, if they all scale together.   
 
It is interesting to note that while 21/21/41 and 15/15/15 are mathematically consistent results, 1/1/1 and 
41/41/41 are not. For 1/1/1 B’s rating is just over 0.5 and for 41/41/41 B’s rating is just under 0.5.  

 
The model does produce interesting results if there are inconsistencies in the victories.  For example, if A 
barely beats B (1-point), and A barely beats C,  you expect B to basically be tied with C and the game 
between B and C close. But what if it is not close, what if B destroys C (41-points). Then, to satisfy the 
equations, you arrive at 𝑟3 = 0.65, 𝑟4 = 0.55, 𝑟5 = 0.30.   Notice that A does not get the ‘credit’ for the B 
destruction of C. Because B>>C, B’s rating is increased by .05 at the expense of C. In a Z score context, A 
is +1.02, where B is +.35, and C is -1.37.  See the chart below for all the permutations of 3 teams 
considering margin of victory of “barely beats” (𝑚 = −0.25), “beats” (𝑚 = 0), and “destroys” (𝑚 =
0.25).        
 
 

 
 
 
 
 
 
 
Now, consider the oldest dilemma in rankings: A beats B, B beats C, but C beat A.   We can 
solve this analytically with what we have learned!  In the cases where all 3 victories are by 
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the same margin, we get 𝑟) = 0.5, 𝑟> = 0.5, 𝑟H = 0.5 as expected. But if we have 
discrepancies in the margin of victory, we can analytically say who the best team is.  It turns 
out the 3 equations are solved in greatest favor for team A when A destroys B, B beats C, and 
C barely beats A. In that case you have 𝑟) = 0.551, but a standard deviation of +1.41, which 
is the greatest standard deviation in the table. Notice the rating 𝑟) = 0.552 is higher if A 
destroys B, B destroys C, and C barely beats A, but the standard deviation is lower at +1.28. 
 
 

 
 
 
 
 
The classic case of A>B>C>A dilemma is the 2008 Big 12 south season between Oklahoma, 
Texas, and Texas Tech.   During that season Texas beat Oklahoma in the Cotton Bowl by 10 
points.  Later in the season Oklahoma destroyed Texas Tech by 44 points. However, a week 
before that drubbing Texas Tech barely beat Texas on a last second pass by 6 points.  All 
three teams ended the regular season with identical 11-1 records, the only blemishes were to 
each other.  
 
In the final AP poll before the conference championship week eight more voters decided to 
elevate Texas as the best group of that trio (over Oklahoma), while the coaches’ poll had 
Oklahoma on top. Highlighted in blue in table X is the Oklahoma-Texas Tech-Texas 
scenario, with Oklahoma as team A, Texas Tech as team B, and Texas as team C. Our 
equations are solved in this case as a tie between teams A and C, Oklahoma and Texas.    
 
Other interesting things fall out due to the solution of the simultaneous equations. Consider a 
top team that has gone 12-0. This team has beaten both a top 10 team by 1 point, and a 
bottom 10 team, also by 1 point. As margin is increased from a 1-point victory to a 𝑚 point 
victory for the game against the top 10 team, the rating of the 12-0 team increases 
approximately 1.5X how its rating would increase for the same 𝑚 point victory against the 
bottom 10 team (returning the top 10 team victory to 1-point).  You are rewarded more for 
larger MoV victories against top teams, which is intuitive. 
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4.0 Normal Distribution of the ratings 
 

Note that the ratings are a normal distribution. This is seen in a Q-Q plot of ratings: 
 
We can test this with a Normal Q-Q plot. Below we show final 𝑟 for all teams in 2022 with the 
actual 2022 𝑟 plotted against theoretical: 
 
 

 
 
The resulting plot line gets more linear as more weeks go on.    Here is the Q-Q plot after just 1 
week of games have concluded (2022). 
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The dot on the very bottom left is the group of FCS schools with a record of 2-39. The bubble on 
the top right is Alabama with a record of 1-0, with a 𝑚 = +.25	victory over Utah State. Utah 
State at this time has a 0.4902 rating, with a 1-1 record, having played and won a week 0 game to 
UConn.   The amazing thing here is this model ranks Alabama #1 after just 1 week of data with 
no preseason or prior year information at all even though 21 teams won in week 1 by the same 
𝑚 margin (25+ points) against FCS schools.  
 
The ratings confirm a normal distribution after enough games are sampled.   
 
 

 
 

Elo-ness of the model 
This model is also Elo-like in the sense it is a zero-sum model. No one team can increase in 
rating without a matching decrease coming from the rest of the pool. The sum of all teams 
ratings is always 0.5	 ∗ 	#𝑡𝑒𝑎𝑚𝑠. 
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5.0 moving the model to 5 teams 
 

5.1 expanded Colley 5-team analysis 
 
 
 
Consider a 5-team league, teams A-E. The league plays a total of 7 games with the following 
results: 
 
 
 

 
 
In our world these are all 10-point wins by the score of 10-0 so expressly as to remove margin 
of victory from consideration (but not strength of schedule).  Note that we have a seemingly 
better team “A” with a record of 2-1 and a worst team “E” with a record of 1-2.  B, C, D all 
have .500 records, with B and D having played 2 games and C played 4 games – once against 
each member of the league. How would you go about ranking these teams? 
 
After inputting strength-of-schedule with the original formula (no MoV) we come to the 
following ratings: 
 

 
 
Team B is clearly better than team D, because it’s one win is against A, the best team in the 
league, where team D has only a win against team E, the worst team in the league.  Now let’s 
look at what happens if team A’s wins over C and E are dominant wins, keeping a 10-point 
loss to team B.  
 

Figure 2: 5 team league results.  Read entries left to right (not 
top to bottom) - A beats C and E, A loses to B 
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Note that A gets significantly stronger, moving up +.017, at the expense of -.026 from C and -
.074 from E. Where did that extra +.005 come from? It came from D, who dropped a whole -
.025.  The extra +0.2 went to B, who got rewarded for beating C and barely losing to A.  
 
In fact, Margin of Victory can cause changes to the order.  Imagine this scenario: 

 
 

   
 
 
While all other victories have been reset to 1 point, B’s win over A was dominant – 40 points 
(for this system we have been using 𝑚 linear, 40 points equals 𝑚 = 1, where 20 points results 
in 𝑚 = 0.5). This forces B to be on top to satisfy the 5 equations with 5 unknowns.    In this 
particular model B needs a 28-point victory 𝑚 = 0.7	to have a higher final rating (the point 
they both get tied is at a .558 rating). 
 
 
 
 

5.2 2008 ACC 5-team analysis 
 

Let’s examine another 5-team scenario, the 2008 ACC subset of Miami, VT, UNC, UVA, and 
Duke. All teams played each other exactly 1 time with the following results: 
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6.0 model applied to a full FBS season 
Let’s model the 2022 season and accuracy of this method to the human polls at 4 points in time: 
Week 5, Week 9, Week 13, and Week 14. For each week we will compare the computer method 
to the AP/committee ranking for that week and the committee final ranking for 𝛼 = 0 (which is 
the Colley method without the groups of FCS teams) and 𝛼 = 0.5 (which is the 
playofPredictor.com method) 
 
 
6.1 computing 𝜂 
To start, we need a metric to compare against.  We will use the term “mean absolute ratio” 
denoted by 𝜂, as first proposed by Wes Colley in his 2002 paper.     
 

η = exp x(
1
25		> 		|	ln	 𝑗H(𝑡𝑒𝑎𝑚8)−	ln 𝑖	|

'C

8<$

| 

 
𝜂 is the ratio of the playoffPredictor ranking to the poll ranking, or vice versa, so that the larger 
of the two always in the numerator, (specifically η is the exponent of the mean of the absolute 
values of the logs of the ratios), so η = 1.25 means the rankings would differ by typically one 
place at #4, and 5 places at #20. 
 
Now that we have our metric in place, we backtest with 2022 data. Each week the games for the 
previous weeks are input and ratings generated.  Those ratings are compared with η to the polls 
(AP for weeks 1-9, cfp committee for weeks 10-14, and AP for final rankings). 
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In green I have highlighted the best 𝜂 for each week.  Generally, 𝜂 is best in early weeks with a 
weighting of around m=0.3, and best in late weeks with an m=0 (which is the Colley method, no 
margin-of-victory since 𝛼𝑚 = 0 when 𝑚 = 0). The best improvement on the m=0 weight is in 
week 7 where 𝜂 is improved from 1.63 to 1.32 (for both m=0.25 and m=0.3) which is an 
improvement of 49%!  Improvement in 𝜂 is calculated as: 
 

𝜂84I,3J949-6 =	
𝜂4<# −	𝜂4<(
𝜂4<# − 	1

 

 
Where 𝜂4<( means we are comparing the improvement from weights of 𝑚 = 0 to 𝑚 = 𝑋, 
which in the playoffPredictor.com method is 0.25 
 
 
 
 
 
(Comparisons start on the next page) 
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Week 5: 

 
Figure 3: 2022 week 5 - alpha=0 (no Margin of Victory Considered) 

 
Figure 4: 2022 week 5 - alpha =0.5 

Note that we get an improvement in 𝜂 of 37% to the week 5 poll, and an improvement of 
17% to the final poll (which was of course unknowable at the time of week 5).  All of the top 
6 teams in the computer ranking are the same top 6 teams in the AP poll, with no one team 
more than 1 position off its poll ranking. Without MoV Michigan alone is 7 spots off.  
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Week 9: 

 
Figure 5: 2022 week 9 - no MoV 

 

 
Figure 6: 2022 week 9 - alpha = 0.5 

For week 9 we get an improvement in 𝜂 of 28% to the week 9 poll, and an improvement of 
21% to the final poll. 
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Now we look at week 13, which is the last regular-season week: 

 
Figure 7: 2022 week 13 - no MoV 

 
Figure 8: 2022 week 13 - alpha = 0.5 

 
For week 13 we get a retrogression in 𝜂 of -6% to the week 13 poll (adding in MoV made 
things worse), but still an improvement of 21% to the final poll. 
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Finally, let’s consider week 14, which is the conclusion of championship week, where 
several rematches are played: 

 
Figure 9: 2022 week 14 - no MoV 

 
Figure 10: 2022 week 14 - alpha =0.5 

In the final poll itself we get a regression in 𝜂 of -11%.   
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These results are typical -- 𝜂 improvement of 20% to 50% can be seen in early and 
midseason weeks, and 𝜂 improvement (regression) goes to -20 to -50% by the end of the 
season. 
 
A way to read these results is that in the early season margin-of-victory heavily influences 
where teams deserve to be ranked, but in the late season who you beat matters more, at least 
for the purposes of the polls. 
 
Are these results good? Is the desire to have 𝜂 = 1, which implies computer poll and 
AP/committee poll alignment? To the latter question, the answer is probably not. If computer 
ratings, even these simple ratings10, discover hidden truths (like Texas A&M is not as good 
as the public thinks, or TCU is much better than people realize) early, than the computer 
formula will have provided a valuable service, and if this realization can be done with simple 
inputs of only final scores, it lends credence to composite ratings that incorporate more 
information than just scores.     
 
For example, let’s look at the final ratings/rankings for 2022 and examine TCUs place. Here 
are the final results with both 𝛼 = 0 and 𝛼 = 0.5, 𝑚 ∈ (−0.25	, 0	, 0.25) 
 
 

 
Figure 11: TCU with final ranking of #3 with no MoV 

 

 
10 I acknowledge the math may not seem simple, but it really is. Again, only 1 input is used, and we get good 
correlation with human polls and betting markets. 
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Figure 12: TCU with ranking of #7 with MoV taken into consideration 

We see TCU drops all the way to #7 in the playoffPredictor computer model. Is this correct?  
According to the pollsters, no. The AP put TCU #2 in the final poll, despite a 58-point 
drubbing to Georgia in the national title game. My estimation is that #2 spot is not correct.  If 
they were going to play a follow on game against any of the teams ranked 1-6 they would be 
a significant Vegas underdog. The public just understands that TCU may deserve the #2 
ranking in the final poll, but TCU is not the 2nd best team in the country.    
 
 

 
We can also test other scenarios. If Oregon wins 9 games but loses one game by 46 points to 
Georgia, how bad is that one loss compared to if they lost a close game to Georgia by 3 
points? 
 
2022 ratings through week 14 (win perspective) 
 

 
 
Oregon is #15 which is the same as their final committee rank 
 
Change week 1 to a final score of Georgia 6 - Oregon 3: 
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Oregon moves from #15 to #12. Georgia’s ranking stays #1, but their rating moves from 1.2006 
to 1.1680. 

 
From the loss perspective Oregon stayed #12, and Georgia went from   1.0420  to 1.0402 

 
Washington (who had a bad loss to Arizona State) is the other example. Win perspective 
does not punish them as much as loss-perspective would. 
 
 
 
 
 
 
 
 
Note that this is not, and can not be a perfect model for every situation.  For example, if a 12-
0 BYU team beats all their WAC opponents by 1-point, yet still gets matched in the bowl 
game against Michigan and defeats Michigan by a small margin, there is a solid argument for 
undefeated and best in the country, but their strength-of-schedule and margin-of-victory 
would be so small that it is likely other teams with a loss would be rated ahead.  
 
Another example would be if at the end of a season the #1 and #2 teams played each other a 
ridiculous number of times, like 100 rematches.  Each team would end up with a record 
around .500, even though they were clearly the 2 best at the end of the regular season. 
 
This method is not intended to be a perfect model for any hypothetical situation, but it is the 
best model I know of for the task. In fact, according to the Arrow impossibility therom there 
is no perfect model, and he won a Nobel prize for that insight.  
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SECTION 2 
 

USING BIAS TO PREDICT 
COMMITTEE RANKINGS 
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7.0  Committee bias and committee predictions 
 
 
 
The method will assign a bias to a team based on the difference from the committee’s ranking 
and the computers ranking, using the rating difference between those two rankings.   
 
Using an example to illustrate, say the computer ranks Penn State #1 with a rating of .955 and 
the computer ranks Alabama #2 with a rating of .920.  That same week if the committee ranks 
Alabama #1 and Penn State #2, then Alabama will be assigned a bias of .955-.920   (=+.035) and 
Penn State will be assigned a bias of .920-.955 (=-.035).  
 
For a different example, assume the committee rankings are #1 Alabama, #2 Georgia, and #3 
Penn State,  while the computer rankings and ratings are #1 Penn State=0.955, #2 
Alabama=0.920, and #3 Georgia=0.900  then the bias for each team would be: 

• Alabama = 0.955-0.920  =  +0.035 
• Georgia = 0.920-0.900  =  +0.020 
• Penn State = 0.900 – 0.955  =  -0.055  

 
If in both the computer poll and committee poll Georgia is ranked #2, the bias is 0, regardless of 
what the computer rating of Georgia is. 
 
The bias is then averaged over the course of a year and used to calculate the predicted committee 
rankings after games are played on Saturday, but before committee rankings are released on 
Tuesday.  Bias is not carried over from year to year. 
 
I have decided to move to this method because there is such a difference in computer rating 
between an undefeated team and a 1 loss top team. Because the committee only assigns rankings 
and not numerical ratings, it is very hard to capture this difference year to year.  For example, 
there is a strong difference between 2016 Alabama at week 14, with a 13-0 record and computer 
ranked #1 and 2015 Michigan State at week 14, with a 12-1 record and also computer ranked #1. 
This method is the easiest way to not let that difference unduly influence bias.  
 
 
To predict the playoff committee poll on Tuesday, the numerical rating from the computer is 
added to the bias for a team, and those ranks predict the committee rankings. As long as the bias 
remains about the same this method will track the committee poll with excellent results. 
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SECTION 3 

 
USING COMPUTER 

RATINGS TO PREDICT 
FUTURE GAME 

OUTCOMES 
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 8.0 Using ratings to compute future probabilities 
 
 
8.1 Ratings applied to probability theory 
 
Once we believe we have a true mathematical rating for 2 given teams, is there a way to 
determine the probability of team A beating team B? Is there a mathematical method to 
determine the expected point spread between team A and team B? 
 
We notice the full ratings 𝑟⃗ are a normally distributed random variable with mean 𝜇 = 0.5 and 
standard deviation 𝜎 ≈ 0.25 
 
We move to exponent probability models, like are used in competitive chess. The equation takes 
the form of  
 
 

𝑃(𝐴) = 	
1

1 + 𝐵[(;!/;")/=]
 

 
using 𝐵 base and 𝐷 divisor.   In chess, the values used are 𝐵 = 10 and 𝐷 = 400. The value of 
𝐷 = 400 leads to spread in ratings – A great rating is about 2,200 and a bad rating is about 600.  
This is a range of 1,600 or 4 blocks of 400 points each.  PlayoffPredictor.com ratings go from 
about 0 to about 1, so if we wanted to segment that into 4 blocks we would use 𝐷 = 0.25 and 
then select a B.  However, B and D are related. Look at the following table of equivalent B and 
D pairs: 
 

 
 
 
Taking advantage of that we simply set 𝐷 = 1 and solve for B. 
 
1000 and 1 give the same result as 10000 and 1.3333, or 100 and .6666. In the same way 1000 
and 3 give the same result as 100 and 2, or 10 and 1. This is the result of log math. 
So we use a base of 1000 and a divisor of 1. The divisor of 1 make sense — take that out of the 
equation. Then, what base should you use? Empirically 1000 fits well.  
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At a base of 1000 and divisor of 1, a team with a rating +.16 more than an opponent will have a 
75% chance of winning. So in this sense +.16 corresponds to 200 points in chess Elo. 
In my rating the teams will be normally distributed with a mean at 0.5 and a standard deviation 
around 0.25. Meaning teams that are separated by 1 standard deviation, the better team has a 
85% chance at success. For example, the following teams at the end of the 2021 season were all 
about one sigma apart: 
 

• #1 Georgia (~1) 
• #20 BYU (~.75) 
• #70 Illinois (~.5) 
• #108 Tulane (~.25) 
• #129 1AA (FCS) (~0) 

 
So Georgia has a 85% chance of beating BYU, BYU has a 85% chance of beating Illinois, Illinois 
has an 85% chance of beating Tulane, and Tulane has a 85% chance of beating a FCS school. Is 
that right? It does all correspond well to Vegas projected lines. 
 
Keeping with the logic, Georgia would have a 97% chance of beating Illinois [1/(1+1000^(-.5))]. 
BYU would have a 97% chance of beating Tulane. Are those right? Again, they correlate well 
with Vegas.  
 
We can turn those probabilities to point spreads using the following table. These numbers are 
derived from a fitting of the data. The original article is from boydsbets.com: 
 

  



 - 40 - 

                                                                 



 - 41 - 

 
 
 
The range is from a -40 point home favorite to a +40 point road favorite. It is intentional to have 
more probability along multiples of 7 and 7x+3. 
 
The use of these values withing a range is from start to end inclusive (,]  (excel match mode 1, 
search mode 1), an exact search or next larger value, starting at beginning.  For example, 
P(Road Team Wins) =  1.99% selects -32 point spread, just like P(Road Team Wins) = 2.00% also 
selects -32, whereas P(Road Team Wins) = 2.01% selects -31 point spread. 
 
To test the validity of this method, we can look at a sample from 2022 predicting week 14 – 
conference championship week.  That week has only 11 games contested, so it is fairly easy to 
see how the model works for a specific week.   First off, we need to see what the model rates 
each team inputting only the first 13 weeks of data.  We get this top 25 and which has an 
η=1.247: 
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Using those inputs for team rating we get the following predictions for week 14 games. 
The below table lists the 11 games played on the weekend of December 3, 2022, with the 
computer predicted winner and line, the Vegas line, and the actual score differential. 
 
 

 
 
As we can see the model lines up sensibly with Vegas data.  Only 2 of the 11 games are a 
greater discrepancy than 4 points, and 2 games (Buffalo-Akron and Boise State-Fresno State) 
line up exactly with the Vegas line.  
 
The model has an average predicted point spread of -7.32, close to Vegas’ -5.14. Furthermore, 
with regard to actual results, this sample has a spread win percentage of 45%, and mean 
average error (MAE) of 13.41.  Vegas had a MAE of 11.86 for these games.  
 
So we have sane data, but can we make it better?  Let’s look at how the data changes if we use 
an 𝛼 = 0  ,11  which makes the input ratings Colley ratings: 
 
 
  
 
 

 
11 or 𝑚 = 0, either way 𝛼𝑚 = 0 
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Again, we have used inputs of scores from weeks 1-13 in 2022. Now η has improved to η=1.167, 
which is a vast improvement of  almost 50% (η=1 is perfect correlation).    But how do these 𝛼 =
0 ratings compare to predictions for week 14? 
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Not so good.  We have gone from a win against-the-spread rate of 45% (4-5-2) to 36% (3-6-2).  
The MAE (Mean Average Error) has increased by almost a full point from 13.41 to 14.23.    So 
the net result is even though the poll is much more correctly predicted by 𝛼 = 0 weights, the 
actual game results are more correctly predicted by 𝛼 = 0.5 weights.  What we see here is a divergence 
between most deserving (𝛼 = 0) and best (𝛼 = 0.5) teams.  The Colley Matrix selects the most deserving. 
The PlayoffPredictor.com method selects a balance between the two.   
 
To illustrate further, let’s use the following maximum theoretical weights for games played through week 13: 
 

𝑚 =	a			
			−1, 𝑓𝑜𝑟	𝑀𝑜𝑉	𝑜𝑓	1 − 7	𝑝𝑜𝑖𝑛𝑡𝑠

										0, 𝑓𝑜𝑟	𝑀𝑜𝑉	𝑜𝑓	8 − 24	𝑝𝑜𝑖𝑛𝑡𝑠
					+1, 𝑓𝑜𝑟	𝑀𝑜𝑉	𝑜𝑓	25 + 	𝑝𝑜𝑖𝑛𝑡𝑠

 

 
Remember, -1 is like a win by default (both teams A&B wind up with 0.5 ratings) and +1 is like A beats B every 
time in infinite rematches.   
 
Using that input we get the following rating / ranking: 
 

 
 
 
η has decreased all the way to η=1.898, which is awful, especially late in the season.  Notice 
Texas is the #3 team, even though they have 4 losses.  But all those losses were less than 7 
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points, so now 𝑚 = −1 losses.    Likewise, 12-0 Michigan is at #6 way behind 11-1 Ohio State at 
#1, who was just beaten by Michigan in week 13. Why? Because in those other 22 games —
Ohio State blew out 5 teams ranked 44-91. Michigan blew out 5 teams also, but those teams 
were ranked 90-120.  The math, when emphasizing propensity to blowout competition, works 
out to Ohio State’s strong favor, even with the solid 22-point loss to Michigan.    
 

 
 

 
 
 
 
  But again, the real question is, how do these 𝛼𝑚	 ratings manifest as predictions for week 14? 
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As you can see, fantastic!  We have gone from a win against-the-spread rate of 45% (4-5-2) to 
82% (8-1-2).  The MAE (Mean Average Error) has decreased all the way to 10.45, almost 1.5 
under Vegas.    Again, we see divergence between most deserving (𝛼 = 0) and best (𝛼 =
0.5,𝑚 = +1,−1) teams.  The selecting of weights of 𝑚 = +0.25, −.25 is a good balance 
between most deserving and best, with the best results to historical backtesting. 
 
Of course, the model does not get ATS results around 80% for large sample sizes, even if you 
use the weights of 𝑚 ∈ (+1,0, −1).  Using those weights for the whole season of 2022 you get 
an ATS of 49.3%.  However, the basic point that as m increases from 𝑚 = 0 to 𝑚 ∈
(+0.25,0, −0.25) the general trend is for the 𝜂 to get worse and the MAE & ATS to get better 
(closer to Vegas or potentially above Vegas) 
 
And here we come to a critical point, perhaps the most important result to fall out of this whole 
method. Namely: 
 

Axiom #3: There are distinctly different equations for generating m margin for arriving at 
the most deserving teams and the best teams 

 
The best teams ≠ the most deserving teams.  This is not just a hunch; it is backed by data.  
When we use an 𝑚 generating function that does not punish close wins (or reward close losses) 
we get an 𝜂 that comes very close to the AP and committee polls, but does not do as well 
against the spread and against a mean average error statistic compared to the Vegas line.   
When we use an 𝑚 generating function that does seriously diminish the value of close wins and 
gives extra rewards for lopsided blowouts we get a result that can be used to beat the Vegas 
spread and produces a mean average error much closer to the Vegas line, but increases 𝜂 very 
significantly and begins to diverge with the AP and committee polls. 
. 
 
 
8. 2 Results for full season with PlayoffPredictor ATS weights 
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We now backtest the method and see results for the 2022 season. Lines were taken from 
api.collegefootballdata.com and are closing lines (just before kickoff) from the 1st returned 
provider of lines.  
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We can observe some definite results here.  In week 0 (predicting week 1) we have an awful 
MAE of 24.29.  Of course it is going to be awful – all teams are tied for 1st place with a 0.500 
rating.  Every single game is going to be a predicted point spread of -3.5 (because of the home 
team advantage of 0.05).  Predicting week 1 with this model is not really a prediction that 
makes any sense.  The point of this model is that results on the field map to ratings and 
rankings. Just saying every home team is favored by 3.5 points is as likely to result in success as 
saying every home team will cover or every favorite will lose against the spread. They are 
strategies, but not so much the output of a system of equations with tested weights.  It is more 
meaningful to look at results from weeks 2 through the end of the season.  
 
Weeks 2-11 are all relatively good, several weeks of 55% ATS, with only 3 weeks under 50%.  
 
Weeks 12-14 (predicting rivalry week, conference championship week, and bowls) are not good 
– an ATS of 44%.   But remember the results for those weeks can be excellent if the weights are 
changed closer to 𝑚 ∈ (+1,0, −1).   
 
Every single week has a MAE worse than Vegas. 
 
Overall, with weights of 𝑚 ∈ (+0.25,0, −.25) for the range of 𝑀𝑜𝑉 ∈ (	1 − 7	, 8 − 24	, 25+	),  
home field advantage ℎ = 0.05   and 𝑏  base of 1000 we get a week 2-16 cumulative ATS of 
exactly 50% picking a total of 785 games.  
 
High-confidence picks 
That is the result of the computer picking all 879 games in 2022.  How about identifying where 
the model sees something Vegas does not?  If we only pick games where the Vegas line and the 
playoffPredictor.com line disagree by more than 7 points we see in the next chart how full 
season ATS numbers come out: 
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We see much better results, especially in 
predicting weeks 2-10. We get weekly win 
rates against-the-spread of up to 65%. 
Things get much worse in predicting weeks 
11 through the bowl season, dropping to a 
low of 0%  (0 correct out of 2 total picks) for 
week 14.  
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Overall, with weights of 𝑚 ∈ (+0.25,0, −.25) for the range of 𝑀𝑜𝑉 ∈ (	1 − 7	, 8 − 24	, 25+	),  
home field advantage ℎ = 0.05   and 𝑏  base of 1000 and only picking games where the Vegas 
line differs from the playoffPredictor.com line greater than 7 points, we get a week 2-16 
cumulative ATS of 51.65% picking a total of 272 games.  
 
Is that good? More importantly, is it just simple luck?  I would say it is not good enough.  A good 
system should have an ATS>55% with n>200 games picked.  As we will see in the next section 
ATS numbers >65% are actually impossible. 
 
 
 
 
 
 
8.3  Results with perfect forward information 
 
Instead of backtesting, let’s consider perfect forward information. If we had the final season 
ratings for every team, how good would the model do against the spread? 
 
 
 

 
 

What we see is that with even with perfect information we can only beat the spread 65% of the 
time.  Even high confidence picks are only right 74% of the time. An example of a high 
confidence pick with perfect forward information would be picking TCU-Oklahoma in week 5. 
The final rankings had TCU at #7 and Oklahoma at #46, but since this was not known at the time 
of the game Vegas had TCU a +5 point underdog at home.  The playoffPredictor model 
computes that game as -18 point favorite for TCU when given final season ratings. The actual 
final margin was TCU -31.   It looks like a no-brainer in the rear-view mirror, but high confidence 
picks are only correct less than three-quarters of the time! 
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 Conclusions 
 
We have come up with a system that is simple, open, no prior-season information that produces 
great results vetted against real backtesting. 
 
There is a difference between most deserving and best. Most deserving correlates to low 𝜂 and is 
produced with weights for m that do not penalize close win (wins by 3-10 points).  Best 
correlates to performance ATS with low MAE and is produced with weights for m that do 
penalize close wins and reward blowouts. 
 
It is my hope people will use the principles, methods, and metrics of this paper and expand their 
own systems to get ATS >55% and MAE under the Vegas line. 
 
 
 


